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Problems connected with the propagation of waves In elastic media are more 
complicated than acoustic and electromagnetic problems inasmuch as there are 
two velocities of propagation In elastic media, and It becomes necessary to 
consider the Interaction of the longitudinal and transverse waves in the 
boundary conditions. A large number of works have been devoted to these 
problems In recent years. By way of example the papers [l to 153 may be men- 
tioned. 

In [l] problems of the diffraction of elastic waves by circular and ellip- 
tic cylinders are formulated for various boundary conditions. The solution 
Is obtained In the form of Infinite series In the suitable orthogonal func- 
tions. These series converge sufficiently rapidly only when the linear 
dimensions of the cross section are small compared to the wave length. In 
the collection of papers [2] formulations are given for several problems of 
wave propagation in elastic media having cylindrical or spherical interfaces. 
A method of investigation of the infinite series which represent the solu- 
tions Is proposed, and problems connected with the substantiation of the pro- 
posed method are discussed. 

A quite general method of solution of problems of scatter1 
frequency elastic waves by curvilinear objects Is proposed In "B 

of hlgh- 
3 and 43. 

However, the solutions obtained by this method are valid (In accordance with 
Klrchhoff's principle) only In the "Illuminated" region. Many forelgh pub- 
lications [5 to lo] on the scattering of elastic waves by a cylinder or 
sphere deal essentially with the Raylelgh case (ki’< 1, where cz Is a char- 
acterlstlc dimension of the body). One term or the first few terms of series 
in the appropriate orthogonal functions are taken into account. 

The diffraction of step waves by a cylinder has ordinarily been considered 
either In the Illuminated region [ll] or for t ' 20/c (c Is a wave velocity) 
[12 and 131. 

In Cl.4 and 153 the Importance of finding the short-wave asymptotic solu- 
tlon for cases of steady state Is polned out, since from this solution one 
for a transient problem can be obtained using the formula for the lnverslon 
of the Laplace transform. In [15] this method is used to solve the problem 
of the diffraction of a compression wave due to an impulsive line source by 
a rigid cylinder. The solution Is obtained In the vicinity of the wave front. 

In the present paper, as In previous ones [16 and 171, the method of Wat- 
son [18] Is used. This method was further developed and amplified by Fok 
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[lS;], and has been applied previously to acoustic and electromagnetic prob- 
lems [18 to 223. The problem of the diffraction of plane transverse waves 
by a sphere is solved by this method and a short-wave asymptotic solution is 
found for the displacements in the scattered waves in the various regions of 
the elastic spece: the Illuminated region, the shadow, and the penumbra. 

1. bomulMlon of the problem, A plane transverse wave with displace- 

ments polarized in the x-direction 

W, =wO exp (- iotj = x0 .cxp i- i (ot 4- k,z)l (f.1) 
is incident on a sphere of radius a (Flg.1) in a homogeneous elastic space. 

The total displacement fiqld for steady-state waves satisfies Equation 

+gvw - 
1 

&oxvxw+w=o (1.3) 

In order to solve Equation (1.2), we consider three solutions of the vec- 

tor wave equation [ 231 (1.3) 

where k, and k2 are the wave numbers of the longitudinal and transverse 

waves, ro, 6, and PO are the unit vectors of the spherical coordinate sys- 

tem, P,.(v) are the associated Legendre 

X functions, r.(S) are spherical Bessel 

functions J,(S) or spherical Hankel func- 

tions h,(c) . The superscripts minus 

and plus (T) correspond to the minus and 
s z plus signs and also to the disposition of 

the functions cos mcp and sin mm on the 

right-hand side of (1.3). These solutions 

(1.3) of the vector wave equation In spher- 
YV lcal coordinates are obtained directly 

Fig. 1 from the characteristic solution of the 

corresponding scalar equation by applying 

the gradient and curl operators [23]. Therefore, the functions 1 -correspond 

to langitudinal waves, and m and n to the two types of transverse waves. 

We also expand the incident vector wave (1.1) into spherical wave func- 

tions C 231 Qp 

w. = fij(-i)n*[m,i + hG] (1.4) 
I 
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Then the scattered field due to the incident 

tion (1.2) outside the sphere can be written In 

wave (1.4), satisfying Equa- 

the form [ 10 j 

The supk%_!ripts (1) and (2) refer to the functions jn (g) and /lil’ (E) 

respectively; a, Y % and en are unknown coefficients which must be deter- 

mined by the boundary conditions. The boundary conditions for r = a are: 

for the case of a perfectly r1gl.d sphere of lnfinlte density 

ZL = Q 22-z 10 -.z 0 (1.6) 

for spherical surface which is free of traction 

where X and 11 are elastic constants. Using the boundary conditions (1.6) 

or (1.7) and the orthogonality relations for the wave functions 1,m and 

n 1231, we obtain 8 system of equations for the determination of the coef- 

ficients in Equation (1.5): 

for the case of the rigid sphere 

for the spherical cavity 

cn [z&p” (y) - hn(l) (y)] = -yin’ (y) + in (Y) (x = b, y = ha) 

Since the coefficent 0. of the function !a in (1.5) occurs only in the 

last equations of the systems (1.8f and (X.9), the waves which are represented 

by P do not interact with the other two types of waves, those represented 

by the wave vectors 1 and XI in (1.5). This shows that the wave vectors 

m describe the propagation of transverse gIGwaves, polardzed at right angles 

to the plane of incidence, and that n and 1 are transverse LTV-waves polar- 

ized in the plane of incidence and longitudinal P-waves, respectively. 

We introduce the superscript r for quantities which refer to the case 

of the rigid sphere and e for the free boundary, and we determine the 
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coefficients in (1.5) 
A, b,=_-2, G 

&==K, C,=-- 
A 

/I,’ = mp72 (n + q, AT&e = Zx?pn(n+ ~)[2n(n+Q-4--_~) 

A’ = lp (y), A” = yh,“” (3) - It,(l) (y) 

A’ = ~~~~~” (x) /6,/l)’ (ZJ) + xi$” (z> l&p) (y) - n (n + 1) f&p (2) I*,ll) (7-J) 

(1.10) 

A.” == 4 [n (n + 1) - 2) rylz,“” (J) h,(l)’ (y) - 2y3h$” (.r) h$) (y) + 

+4b(~+v--~2 - 21 L&(l) (x) h,(l) (y) - 
- [4n2 (n $1)” + y* - 4y2n (n + 1) - 8n (n + 1) + 2@] &(I) (LX) h,(l) (y) 

The coefficients C, and 3. are analogous to A and A , respectively, 
replacing hn(l) (y) by jn (y). Thus, the displacement field assumes the form 

It is known that the series representing the solution (1.11) converge. 

However, for high frequencfes (k,U and k,a ES l), they converge very slowly 

and are not suitable for practlcai application. 

a. The lmsoa tzwi5ioFmation. In the study of the diffraction of high- 
frequency waves (k,U and k aa 1) we shall make use of Watson's method [ 183 
gn;;)transform the series 1 . ) 1 11 into integrals In the complex plane v 

. . 

fl(V)dV 

exp ‘-- ivx@’ [b,_+ (v) -j- ifs" (v)] dv 
co9 vn 

exp (-- ivn’2) [cy_,,rf~ (v) + fsx (v)] dv 
cos VI? 
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The expreaslona fsX(V) and fsX (V) differ from f,(Y) and f3(v) In that the 
function A(0 (k,r) In the latter Is replaced by jy_,,I (k,r). 

The lntdikals of (2.1) a.ong the contour C can be replaced by lntegra- 
tlone along the path EF which encloses all the poles of the lntegrands of 
(2.1) as tunctlone of V which lie In the first quadrant. This Is true 
because all the Integrals along ED vanish by virtue of the oddness of the 
lntegrands and the Integrals on the potions AB, DE and FG of the circle 
tend to zero as the radius of the circle approaches Infinity 

F . 
wP = p/4 s Y exp (- ivn / 2) 

v2 - */4 cos VIZ f, (y) a,_I/*dY 

Ii 

F 

W 
8V = ,sinir ~ 

s 

V 

v2 - 114 
exp ;-s;; ‘2) [by_-l12fe (v) + ifz” (v)] dv 

E 

(2.2) 

F 
‘* 

SW = $d4 

a 

V exp(- ivn/2) 
W 

v2 - 'I4 cosvn: IC"_l,,fS(V) + f3X (v)ldv (2.3) 

We compute the Integrals by means of the residues of the respective inte- 
grands at the poles Vk and xL 

"k 
VkB,k-l,,eXp(-iVkn/2) 

W so= ~~c3'n/42 (v a fa(vk) 
k -l/4)cos vkMA / a~),~ 

"k 

(2.4 

The convergence of these series fbllows from the convergence of the series 
of (1.11). All the equations given up to this point have been exact. Later 
we shall study a shoet-wave asymptotic solution for the displacements for 
k,O and k,aB 1 . Therefore, ;re shall replace the Bessel and Legendre 
functions contained In the solution by their asymptotic expressions cl9 and 
24). 

The poles of the lntegrands of (2.3) are determined according to (l.lO), 
by the zeros of the function A . Correct to terms of order (k,a)-1 and 
(%a)-' 

Ae =yh,!@) = 0, A'-_ll,_$;1/1(y) = 0 (2.5) 

ThUS, mkr, the zeros of the functions A', coincide with the zeros of 
the spherical Hankel functions of the first kind and the K~* with the roots 
of Its derivative (2.5). The zeros of these functions are known [lg and 201. 
In accordance with (l.lO), the poles of the lntegrands In (2.2) coincide 
with thd roots of Equations A I 0 , which assume the form 
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for -k,a and k,as, 1. 

Equations (2.6) coincide with the analogous ones In problems of diffrac- 
tion by a cylinder [15 to 171, with the accuracy to constants. These equa- 
tions have two series of roots located in the first quadrant which are 
approximately of the form 

h, = 32 + (‘,‘ar) ‘/J tk’ p,c = y + (‘hYf’“% 

jth;nzankel-Fok approximation), where 
t Tk are the roots of Equations 

w' (tf - q1 (t)w (t) = 0 
zu’ (Tf - qs (7) w fz) = 0 

Here W (8 =a(g)hir (8 is the Airy 
function C193; for the poles which lie 
near x and I/ , respectively, 
and q.(7) may be taken as 

P (t) 
constan s % 

m3 

G ReJ 

Fig. 2 

1 

( ) -5 
‘Is 

qae = 4 -f/1 - ,a 

For the case of a cavity, the equation 
C1*= 0 has one more real root V* I by 
(K>l) l The residues of the integrands 
of (2.1) at this pole give the displace- 
ments in the Rayleigh surface wave f173. 

3. rnff¶wotion in tha regal of the 
#ha&w. Let us Investigate the short- 
wave asymptotic solution for the dlsplace- 

ments (2.4). We first estimate the order 

of magnitude of the displacement compo- 

nents in the longitudinal and transverse elastic waves for k,a> 1 using 

the asymptotic expressions for the spherical Bessel functions and the associ- 

ated Legendre functions. It then turns out that the displacement components 

@, UP*, v'h In (1.11) are of order (&a)-' compared to the remaining terms 

and may be neglected. With the aid of the asymptotic formulas [24) 
(3.1) 

and suitable asymptotic expressions for the spherical Bessel and Hankel 

functions [19], we obtain 
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(3.2) 

(3.3) 

(3.4) 

(3.5) 

where +T~’ are the roots of IP(T~~) II 0 , and T,’ are the roots of w'($')-Q 
We shall now determine the regions in which the series converge rapidly. 

The quantities kr, pt and K& have positive Imaginary parts which increase 
as the number k becomes larger. Therefore, the series (3.2) to (3.5), con- 
verge quite rapidly If? the following inequalities are respectively satisfied 

ma-1.&- cm-’ (a/r)+fk--Vzn>O 

2 cm- E- cm-’ (m/r) +l?-ll,n>O 
- CQS -’ (a / r) + 6 - ‘l,n > 0 
- cm-’ (a / F) + 16 - ‘/,z’c > 0 

thus, the series (3.2) for the londktud5.nal displacements will converge 

rapidly everywhere in the region of the shadow for longitudinal displacements, 

the bound- of which 
rl = a f cos (e - ax) 

is the truncated cone with vertex angle n - ax having as a directrlx the 
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parallel circle defined by cx (ox Is the angle of total Internal reflection). 

The series (3.4) and (3.5) for the transverse displacements have a common 

region of convergence corresponding to the region of the geometric shadow; 

Its boundary 

rc = a / cos (6 - l/,n) 

Is the half-cylinder surface to the left 

of the equatorial circle (Plg.3). 

Fig. 3 Fig. 4 

The series (3.3) for transverse displacements describes the displacements 

in the diffracted waves of the head-wave type [17]. The boundary of Its 

region of convergence (Flg.3) 

ry = UE / co.9 (6 + ‘1251 - 2a”) 

is the surface of the truncated cone with vertex angle 2(rr - ax) (the ver- 

tex angle for fg Is twice as large as for rl) and having the same c paral- 

lel circle as dlrectrlx. 

The physical meaning of Equations (3.2) to (3.5) Is as follows: they 
give the displacements In the diffracted waves wh,lch envelop the sphere. 

The lo ltudlnal diffracted waves (3.2) and the transverse ones of head- 
wave type "i 3.3) originate on the ax-parallel circle where the Incident 
transverse rays make the angle cX with the normal to the sphere. Here are 
formed the longitudinal diffracted waves which move on the surface of the 
sphere along the meridians emitting longitudinal waves tangentially and 
transverse waves at the angle ax. As Is easy to see from Expresslons (l.ll) 
for the displacements, only the gV polarized transverse waves take part In 
the formation of the longitudinal scattered waves (Plg.4). The Incident 
transverse rays which are tangent to the sphere at Its equator give rise to 
diffracted transverse gV and SH waves (3.4) and (3.5) which also propa- 
gate on the sphere along the meridians and are then emitted to the point of 
observation along the tangent (Flg.4). The presence of co8 vrf in the 
numerators of (3.2) to (3.5) shows that the diffracted waves which encircle 
the sphere 1, 2, . . . . n... times before falling on the point of observation 
are also taken Into account. The singularity (sin??)-/' Indicates that the 
diffracted waves focus at the points of the axis 6 = sL Near 6= n Equations 
(3.1) are not valid (the condition /v sin Sl>l la not satisfied), and we 
should use the asymptotic expressions obtained from 

P ” I,) (- pL) -+ I, [y (n - WI 
valid for IV/& 1 and the quantity 1 v(n---)I comparable to unity. 

Thus, for the scattering of elastic waves, unlike the acouetlc and elec- 
tromagnetic cases, there exist four types of different diffracted waves 
having different lllumlnated regions and shadows, as may be seen from Equa- 
tions (3.2) to (3.5) (Plg.3). 
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4. Dlffmotloa In the “lllw&utrd* rr&onr. In the regions where Equa- 

tions (3.2) to (3.5) cease to hold (these are the Illuminated regions for 

the corresponding types of waves), we shall proceed from Equatlons(2.2) and 

(2.3) in which we replace P.,_,,'" and $p,._,,lX jc?j? by corresponding expres- 

sions which follow from (3.1) and 

P,_$ - txp [i {y - 7j.J n] I>,,-Ii* + 2i COS 1'3 QY_'$ (4.,1) 

We shall now compute the first terms of (2.2) and (2.3) which correspond 

to the first term of the right-hand side of (4.1). From the residues at the 

poles of the lntegrands we obtaln 

(4.3) 

(4.4) 

where the subscript 0 denotes those terms in (2.2) and (2.3) which corre- 

spond to the second term on the right of (4.1). Using the Debye asymptotic 

approximations for the spherical Bessel and Hankel functions and the.asympto- 

tic expression 
exp i (VB - l/4%) 

we compute w,p, wSwTand wSah by the method of steepest descents. We con- 

struct the path of steepest descent as in [li'] and obtain 
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‘/t Q (8, a, al) sin bl cos al U 
CZ; (e, al) D+ (adi 

1215 

Sn = i Sill ‘p f (s) ‘12 
Wg 

cos aa 
R7 (I az) y. exp W2r [Q (1, r, a2) - 

I 

- 2 f- cos a2]} + wOg’L (4.8) 

where the W, are the displacements of the incident wave 

iJ'= 1, Ue= 2(2tjin2aI--I), Q(&, r, a) = f/E2 - a2sin2a/r2 

W(&, a) = 1/q E, r, a) [a (E, a, a) + cos al - (a/r) cos c&J (6, a, a) 

D,e (u) = (2sin2 a - 1)2 f 4sin2 a cos aSI (E, a, u) 

Dkr (a) = sin2 a f cos c&:(E, U, a) 

The geometric significance of the angles al and c2 are Indicated In Fig.5. 
They are the angles of incidence of the transverse rays which are reflected 
as those longly and transverse rays arriving at the point of observation P (r,*,(p). 

In Equation (4.8) the upper sign refers to tne case of the rigid sphere, 
and the lower one to the cavity. It Is easy to see that Equations (4.6) to 
(4.8) give the displacements In the waves which are reflected from the sphere 
In accordance with the rules of the geometric theory. Equations (4.7) and 
(4.8) are valid In the Illuminated region for transverse displacements (Flg.3) 
and cease to be correct In the region of the penumbra 
r, of the geometric shadow. 

ulp near the boundary 

(A _ 
In the region LUG, we have /v2 - ~~/-AIJ’~J 

2.5) and the Debye asymptotic expresslon for the function hf,',;2'(y) 
which is applied in the derivation of (4.7) and (4.8) Is not suitable there. 
Furthermore, (4.7) Is also invalid in the transition region ulg near the sur- 

face of the cone PS, since there the Debye 

P 
.ymptotic expression for the function 

hTg (z) I s not correct. Equation (4.6) for 
&z longitudinal displacements is valid In 
the illuminated region for longitudinal waves 
and violates in Its penumbra (Plg.3) near 
the cone rl . It should be n:ied that In 
the deformation of the path EF Into a path 
of steepest descent, poles of the function 
6 sometimes happen to fall between the 
t?paths. These poles are taken Into account 
In the same way as In [17] In obtaining the 
final expressions for the displacements. 

5. Oaloulatlon of the dirplrornmntr ln 
the trurrltlon rrplom. In the regions wl, 
u)~ and UJ~ the displacements are found in 

Fig. 5 accordance with Equations (4.2) to (4.5). 
However, the terms corresonding to ~‘0, war 
and Ui” should be computed, following Fok‘ 

clg], by quadratures using the more complicated Hankel-Fok asymptotic expras- 
slons for h$Jz) and )&U;,ja) (y) . 

In this connection, it 1s convenient to transform the contour of lntegra- 



tion EF into the path r (Flg.6) In the plane 

t -7 (Y - 5) ('/$)"3 

for the region UI~ and uig and the analogous path I-' in the plane 

z = (Y - y) ('i,!,)';" 

for the region (ua. As a result, we obtain 

\ygl’ = _..__ - .- 
ei+t(l) dr -- 

V it, r, 1)V (t, a, e) [w’(t) - ‘II (t) w (t)f 
(5.1) 

$11 (t) = .cpI (t) [ 6 - “/gt - COS-' (u/r) p1 (t) -I- cos -’ Epi (t)] /- 

-t klrVZ (t, r, I) - /czaV2 (t, a, 8) 

Further, the Integral in (5.1) should be split Into two 
from 0 to m along the real axis and the other from - 
along arct =2/3~ . Using the formula for the Airy function an the ray 
arc t = 2/3v , we can also reduce the last integral to one with real limits 

The integrals of (5.2) are calculated by the method of numerical quadra- 
ture with the alci of tables of the functions u(t) and a(t) for real, posd.- 
tive t , which are given in [19J. 

For large negative values of t , i.e. in the 
Illuminated region, the integral (5.1) Is computed 
by the method of steepest descents with the aid of 
the asymptotic expressions [19] 

Fig. 6 

w (t) = (- r)+ exp [2/3i (- t)” + l/&j 

do’ (t) = (-8)“’ exp [2/si (- t)?‘* - L/&i] (t- 401 

The result obtained on some interval of values of 
t coincides with Expression (4.6). 

For t-0 i.e. in the region of the shadow for 'Longitudinal displace- 
ments, the intigraJ.of (5.1) is calculated by means of the residues of the 
integrand at the zeros of the denominator. Here we obtain a series which 
when summed with the series (1.2) coincides with the series (3.2) represent- 
ing the solution of the problem in the region of the shadow. 

Thus, Expression (5.1) ties together the results obtained earlier for the 
solutions in the regions of shadow and light for the longitudinal displace- 
ments, 

Analogously, we obtain for W, 
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(5.41 

u w [2p2 (t) - 3 12 ‘h M’ (t) = -- 
w(d ’ 

g2e (z) = 
4pa* (T) v’pg (tf- 88 ’ 

g2r (T) -_ 

$a (T) = ksa pa (7‘) [@ - l/zti - CW’ apz (4 I rl + kzrV2 (a’, r, 1) 

It is easy to show that Equations (5.3) and (5.4) connect the solutions in 
the region of the geometric shadow with those in the Illuminated region. 

In the region wg we obtain, Instead of (4.1), 

co- 

X 
L 
roe +- pi (t) - &Va (t, r, E) 

I 

’ w’ (t) + tFql (te”“s) w (t) 
dt - ,tjsxi i _, 

” w (t) - c?*=iql (d’i”“) w (t) 

x 

x Pr’fP @e-9 exp fiqs (te’ 

Y (te*“y r, E) 
““$1 [le +- PI (t$“‘] - &,V2 (te’*x”, r, e)] dt) (5.5) 

9s (t) = klapl (8) [S - X/G + 2 COS-1 EPI (1) - cm-1 eapl (tf / r] - 
- 2kpaV* (t, a, e) + k# (t, r, E) 

These integrals may also be corn uted 
table6 of E193. the integrals of "I 

by numerical quadrature using the 
5.5) provide a continuous transition from 

the solution representing the displacements of the SV waves in region (3) 
to the solution In region (4) (Flg.3). 

In this way, for each region of Pig.3 the asymptotic expressions for the 
displacements (&a, klaSf) are represented in the farm 
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Keller's geometric method In the theory of diffraction [25] can be extended 
to the case of diffraction of elastic waves by arbitrary bodies In the same 
'(;y &s was done In [17]. The diffraction coefficients and decay exponents 

n erms of which the elastic displacements are expressed In Keller's method) 
can be taken from [17] for P and .SV waves. For SH waves these can be 
obtained by comparison with the asymptotic solution obtained In the present 
paper. 

'he author Is grateful to G.A. Skurldln for his Interest In this work. 
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