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Problems connected with the propagation of waves in elastlc media are more
complicated than acoustlc and electromagnetic problems inasmuch as there are
two velocities of propagation in elastic medla, and i1t becomes necessary to
consider the interactlion of the longitudinal and transverse waves in the
boundary conditions. A large number of works have been devoted to these

problems in recent years. By way of example the papers [1 to 15] may be men=-
tioned.

In (1] problems of the diffraction of elastic waves by circular and ellip-
tic cylinders are formulated for various boundary conditions. The solution
1s obtained in the form of infinite serlies in the suitable orthogonal func-
tions. These serles converge sufficlently rapldly only when the llnear
dimensions of the cross section are small compared to the wave length. In
the collection of papers [2] formulations are given for several problems of
wave propagation in elastic media having cylindrical or spherical interfaces.
A method of investigation of the infinlte serles which represent the solu-

tions is proposed, and problems connected with the substantiation of the pro-
posed method are discussed.

A quite general method of solutlon of problems of scatteri of high-
frequency elastic waves by curvilinear objects 1s proposed 1nn%3 and 4].
However, the solutions obtained by this method are valid (in accordance with
Kirchhoff's principle) only in the "illuminated" region. Many foreigh pub-
lications [5 to 10] on the scattering of elastic waves by a cylinder or
sphere deal essentially with the Rayleigh case (kia<§ 1, where @ 1s a char-
acteristic dimension of the body). One term or the first few terms of serles
in the appropriate orthogonal functlons are taken into account.

The diffraction of step waves by a cylinder has ordinarlly been consldered
elther in the illuminated region [11] or for t > 20/5 (¢ 1s a wave velocity)
[12 and 13].

In [14 and 15] the importance of finding the short-wave asymptotic solu-
tion for cases of steady state is poined out, since from thls solution one
for a transient problem can be obtained using the formula for the lnversion
of the Laplace transform. In [15] this method is used to solve the problem
of the diffraction of a compression wave due to an impulsive line source by
a rigid cylinder. The solution is obtained in the vilecinlty of the wave fromt.

In the present paper, as ln previous ones [16 and 17], the method of Wat-
son [18] is used. This method was further developed and amplified by Fok
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Short wave asymptotic solutlon for the diffracted fleld 1207

[18], and has been applled previously to acoustic and electromagnetic prob-
lems [18 to 22]. The problem of the diffraction of plane transverse waves
by & sphere is solved by this method and a short-wave asymptotic sclutlon is
found for the displacements in the scattered waves in the various regions of
the elastic space: the 1lluminated region, the shadow, and the penumbra.

1, Pormulation of the problem. A plane transverse wave with displace~
ments polarized in the x-~direction
W, =w, exp (— lwt) == Xg exp [— i (@t 4 kyz)] (t.1
is incident on a sphere of radius ¢ (Fig.1) in a homogeneous elastic space.

The total displacement field for steady-state waves satisfies Equation

—kiIEVVW——Ei—zVXVXW—{—w:O (1.2)
In order to solve Equation (1.2), we consider three solutlons of the vec=
tor wave equation [ 23] (1.3)
Lon = 1o ar Zn (kir) P, (P‘) o mq) T In (,klr) 4 (1) z?j me +
F 0 oo % (er) P, (1 = cos §)
i 9
My, = F o g 2n (kar) P (1) o0 9 — $o2n (ar) 55 Pa™ () Gy mep
- 1 1 0
R = 1o S0 2 () P (1) :;’;Z me -+ ¥ 1 5 [72a (7)1
a a
X P (8) G 700 F o g 3 1720 (ker)) P () o me

where &, and k, are the wave numbers of the longitudinal and transverse
waves, Iy, &0 and @, are the unit vectors of the spherical coordinate sys~
tem, P,*(u) are the associated Legendre
T functions, z,(g) are spherical Bessel
funetions j,{£) or spherical Hankel func-
tions h,{g) . The superscripts minus
and plus () correspond to the minus and
plus signs and alsc to the disposition of
the functions cos me and sin mep on the
right-hand side of (1.3). These solutions
(1.3) of the vector wave equation in spher=-
ical coordinates are obtained directly
Fig. 1 from the characteristic solution of the
corresponding scalar equation by applying
the gradient and curl operators [23]. Therefore, the functions 1 correspond
to langitudinal waves, and m and N to the two types of transverse waves.

We also expand the incldent vector wave (1.1) into spherical wave func-
tions [ 23]

2( ) A s+ ngg) (1.4)
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Then the scattered field due to the incldent wave (1.4), satisfying Equa-

tion {1.2) outside the sphere can be written in the form [10]
[ e
wn 2n-+1Ta - 1 {2+ (- (2)- =
w = Z (—i)" ;{(m[,i L om0 s eumy T b ingy T by (1.D)

The superscripts (1) and (2) refer to the functions j, (§) and h%)(g)
respectively; a,, », and o,, are unknown coefflclents which must be deter-
mined by the boundary conditions. The boundary conditions for 7 =a are:

for the case of a perfectly rigid sphere of infinite density
WU == P oo W = 0 (18)

for spherical surface which is free of traction

f2u 1 dv 1 dw
5rr-(7v+2) “|‘7V( +““°°‘ﬁ+r86+rsm66q))——0

1 dn v v ow w 1 odu (1'7)
re=w(r g tar — 1) =0 =5 +rmma) =0
where i and u are elastic constants. Using the boundary conditions (1.6)
or {1.7) and the orthogonality relations for the wave functions 1, m and
n [23], we obtain & system of equatlons for the determination of the coef-

ficients in Equation (1.5):
for the case of the rigid sphere

anhnt (x) 4+ by '—“L’f?—’-} Bl () = — i " (” 0D i (), el (9) = — ja (¥)

B0 () + 22 [ () + Y1 Q)] = — 5 U (4) + ¥’ @] (1.8)
for the spherical cavity
n [21;,31)’ (x) — Ml%—‘—”ﬁ’ Bt (a:)] 4 ban (n -+ 1) [y e (y) — B (y)] =
= —in(n+1) [y a(y) — = ()]

[ (2) — 7 (1)) b | DI 0 () — I (4)| =

i [ RO ) — ' ()] (1.9)

En Y™ () — ha® ()] = — ¥yl (@) + /n(¥) (v =ksa, y = ksa)

8ince the coefficent ¢, of the function ®m in (1.5) oceurs only in the
last equations of the systems (1.8) and {1.9), the waves which are represented
by ® do not interact with the other two types of waves, those represented
by the wave vectors 1 and n in (1.5). This shows that the wave vectors
m describe the propagation of transverse SH-waves, polarized at right angles
to the plane of incidence, and that n and 1 are transverse SV-waves polar~-
ized in the plane of incidence and longltudinal P-waves, respectively.

We introduce the superscript r for quantities which refer to the case
of the rigid sphere and e for the free boundary, and we determine the
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coefficients in (1.5)

n iB, _ Gy
anz"‘&; bn—""_&“a Cp =
Al =aytn(n+1), AS=2ay"n(n+12n(n4+1)—4—3?
A =1 (), A= yha () — ™ (@) (1.10)

A = 2yh, ™ (@) 1" () + 2k (2) By ) —nn + 1) " @ Y ()

A =4n(n 4 1) — 2] agha" (@) 1 () — 29%Ra () B () +
+b4n(n+ 1)—y*—2) 2h, 0 () bV (y) —
=t (n 1P -yt —dy'n (n 1) —8n (n + 1) + 21 2 () Ba® ()
The coefficlents (, and 7, are analogous to s and A , respectively,
replacing A,V (y) by j, (y). Thus, the displacement field assumes the form

W= (=" r‘—*““‘i];ﬁ; {Fo@altn® (Ror) P () cos @+ g g2 Jen®) (Rar)x
1

o OPnl (1)
a6

. s
10 0D (3,0 (ar) - i (ko)) P () cos @+ B0 5 X

Pyl (M)

cos @ — cpo Top b (Bar) 5 sin @ +-

X [barha® (ker) + i (ear)) 2220 08— o 3 51 (Burhal® (har) i (kar)] X

P,
X ﬁr{wsinw -+ ¥y [enhn® (kor) + In (k2r)] qin{}&l}

—— o [nhn® (kaT) + jn (kzr)] n (P‘)Sm (P} (1.41)
It is known that the series representing the solution {(1.11) converge,

However, for high frequencies (k,a and k4,2 > 1), they converge very slowly
and are not sultable for practical application.

cos g —

2. The Watson transformation. In the study of the diffraction of high-
frequency waves (4,6 and %.a > 1) we shall make use of Watson's method [ 18]
and we transform the series ?1 11) into integrals in the complex plane v

(F1g.2).
i Vag 5, exp {— iva/2)
WP = e""*"‘§ _’:{/ - pc(os o vy
) . v exp (~— ivmn/2) . )
W= fwﬂi W1, cosvm L)+ i (M)} dv 24)

— iV /2
Wt Sl S o)+ O 4

Here and in what follows
b3
P =Py Pu(-m=PJ,

k, Y (kyr) 8P h, Yy P Y
ok, X :f w1/, 3 v=1/,
£ (v) = 1o, "% (k) P, 1} cos ¢ + o "v"';:’;;‘“ el cos @ — gt e

sin
W sme Y
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y2—1 « a x % Sin @
f2 ('V)‘: To —'—‘—kzr ‘ hv’_(.l/)2 (kz?’) Pv_]i/z cos @ + [00 _a'é‘ P.,..ll‘/z COS @ — (FOPV.II/Z sin ﬁ]

1 0
X T 7 [rh, ) (keor)]

cos 0 "
fa (v) =, ) (kor) [ooP,_'.Z S — qog P, Y sin q»]

The expressions f,%(v) and [ (V) adiffer from f,(v) and f;(v}) in that the
function hiB (k;r) 1in the latter 1s replaced by j, ., (k.r).

The 1ntegrhls of (2.1) a.ong the contour ( can be replaced by integra-
tions along the path EF which encloses all the poles of the integrands of
(2.1) as functions of v which lie in the first quadrant. This 1is true
because all the integrals along AP vanish by virtue of the oddness of the
integrands and the integrals on the potions 4B, D and FG of the circle
tend to zero as the radius of the circle approaches infinity

v exp (— ivre / 2)
vi—1/, LRV 4

wP == 374 S fL(v) a,_, dv

E
F (2.2)

wsvzesinldg v__ exp(=iva/2) 16,1, 82 (v) + if* (v)] dv

vZ—1/s oS VIt
E
¢ (— iva/2)
i ik v exp(—ivn
W = o8 /4§ VT eosva Ly fs (V) + BX (V)] dv (2.3)

We compute the integrals by means of the residues of the respective inte-
grands at the poles v, and =,

VA, -y, exp (— iv,a/2)
in/4
wP = — 2! 3] (V¥ = T/a) cos vy (94 0V),, f (vi)
vk

) 'Vkak_l/, exp (— ivyi/2)
WY = 2nedi/ 2 (vkz' —1/3) cos v (@A | "V)vk fa(vy) (2.4)
vk

% Cpmify €XP (— i%y70/2)
i/
W == 2™/ Z (%2 — Vo) cos w7 (IA] 9V),, £s ()
g

The convergence of these series follows from the convergence of the seriles
of (1.11). All the equations given up to this point have been exact. Later
we shall study & shoet-wave asymptotic solution for the displacements for
k,6 and xy;6>»> 1 . Therefore, We shall replace the Bessel and Legendre
f:nctions contained in the solution by their asymptotic expressions [19 and
247,

The poles of the integrands of (2.3) are determined according to (1.10),
by the zeros of the function A . Correct to terms of order (k,a) ! and

(ksa)? .
: A =yh 8) (y) =0, AT =h, B y) = (2.5)

Thus, «,", the zeros of the functions A", coincide with the zeros of
the spherical Hankel functions of the first kind and the x,* with the roots
of its derivative (2.5). The zeros of these functions are known [19 and 20].
In accordance with (1.10), the poles of the integrands in (2.2) coincide
with the roots of Equations A = O , which assume the form
A® = hviayh Y (2) b, (y) — (29 — 42Ph, ) (2) B4 (9) = 0

v—1fs

AT = zyh ay (=) hv(_l,)/z (y) — 'V"‘hv_(nll), () h‘._(xl/)2 (y)=0

v=1/,

(2.6)
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for -kx;a and k,a>» 1.

Equations (2.6} coincide with the analogous ones in problems of diffrac-
tion by a cylinder [15 to 17], with the accuracy to constants., These equa-
tions have two serles of roots located in the first guadrant which are

approximately of the form Y,
Ay =z + (Yaz) 1, e = v+ (Vay)

Imv (the Hankel-Fok approximation), where
ty and T, are the roots of Equations

w' (1) — g (Ow () =0

w{) — g (Dw()=0
Here w {§) =u(§)+iv (§) 1s the Airy
function [19]; for the poles which lie

near x and y , respectively, g,(2)
and ¢,(7) may be taken as constants

. ie 2 \\/s
“"wq:?@?)
o B2 —1P g\
N e yi—e (%) by
g =<y
g2 Vﬁ?(?)

1 y /s
qze — e —— (.....)
4YT—¢ef \'2

For the case of a cavity, the equation
A*= O has one more real root v* = yxy
{(x > 1) . The residues of the integrands
of (2.1) at this pole give the displace~
ments in the Rayleigh surface wave [17].

3. Diffraction in ths region of the
shadow. Let us investigate the short-
wave asymptotlc scolution for the displace-
ments (2,4). We first estimate the order
of magnitude of the displacement compo-
nents in the longitudinal and transverse elastic waves for k,63» 1 using
the asymptotic expressions for the spherical Bessel functions and the associ~
ated Legendre functions. It then turns out that the displacement components
w, wv, v** in (1.11) are of order (k,a) ' compared to the remaining terms
and may be neglected., With the aid of the asymptotic formulas [24) (3.1)

Fig. 2

X dP"_,/’ 2v s .
pt..v,: dv‘ﬂ = (nsin (}) Sin [V(ﬂ'—“\(})~——1/4ﬂ] . {IVSiﬂ\‘}l»‘l
4Py, aP oy3 ¥ " \Rev>1p
Yy ey, R 2 8y 1
Tab T der (n sin 6) 00s [V (%t — B)— *am]

and sultable asymptotic expressions for the spherical Bessel and Hankel
functions [19], we obtain
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262K cos @ oY RERpTS o a
P o= ik VP @i kg1 Vicetst), n] &
W1 (1—a‘/r‘)'/‘(i-——~eﬁ)"" (siuﬂ) et b Priat-han Visettiun r X
« 3 Uikl ot 6= cosa/r )]
- w(t) {t ~— q1°) cos A
. at\'h k] a 3 7t
X {rnz (i — -;_-;} sin [}\.k (m—8) — ’4"}_ ¥+, — €0s LA,;: {(t—9) — _4—}}
(&7 =1, Ke:u_%) (3.2)
2e3K% cos @ 8 \h g (ymras Tl a\Ys @
W = by | Vr-ates-2a Vieet |[T13) 18 8
W= (1—eﬁaﬁlr’)‘/‘(i——e“)"”(Sinﬁ) ¢ z[ reme t}( 2 ) r
1 6XP [iAg (2 cos™t & cos~t ga/r—3/pm)]
X %‘ (T — g1%) cos Ay -~
ee n L g%a? \Ys n
x {ro —- sin [M (n—9)— —4—] —&i{1— 75—) cos [?»k (m—9) — T]} (3.3)
2¢co8@ A\ s (ke a
L - ky Viycah (K287 &
W= (1—a?/ ) (sin ﬁ) emrre ( 2 ) r

exp [— iy ( cosmua/r 4 Ypm)] . . x
wE (V) (T — ga®) cos Py {rﬂ - 8 [Pk (70 —0) — 2—} —

— 0i<1-%>1j’cos [pk(n:m—ﬁ)—-—'—zi]} (3.4)

' 2i(poSiIl(P 1 Y. o, e kza s
sh ke Vil (R0
Ty (we) @ (%)

i cos [#y (X — 0) — Vg ]
X %ka exp [— zxg< cos™t 8 i:- 4 %—)] G5 v (3.5)

1 1 1
sl cacy S et e A A

where T,° are the roots of w(r,°)w0 , and 1 ' are the roots of w’(1’')=qQ

We shall now determine the regions in which the series converge rapildly.

The quantitles X,, u, and x, have positive imaginary parts which increase

as the number % becomes larger. Therefore, the series (3.2) to (3.5), con~
verge quite rapidly if the following inequalities are respectively satisfied

cos -+ € — cos ~* (a/r)—}-ﬁ—-‘!23c>0
2 coste— o (ga/r)+ 8 —1Ym >0
—  eoswt (a/r) 4O —Ym >0
— et {alTr)y 4+ — Y >0
Thus, the series (3.2) for the londitudinal displacements will converge

rapidly everywhere in the region of the shadow for longitudinal displacements,

the boundary of which r, = al cos (& — o)

is the truncated cone with vertex angle n — 2¢° having as a directrix the
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parallel circle defined by o (a* is the angle of total internal reflection).

The series (3.4) and (3.5) for the transverse displacements have a common
region of convergence corresponding to the region of the geometric shadow;
1ts boundary

ry = a/ cos (% — ,m)
is the half-cylinder surface to the left
of the equatorial circle (Fig.3).

Fig. 3 Fig. 4

The series (3.3) for transverse displacements describes the displacements
in the diffracted waves of the head-wave type [17]. The boundary of 1its
region of convergence (Fig.3)

ry = ae / cos (& + Yy — 207)
is the surface of the truncated cone with vertex angle 2{(rm — 2¢*) (the ver-

tex angle for r, 1is twice as large as for rl) and having the same g paral-
lel circle as directrix.

The physical meaning of Equations (3.2) to (3.5) 1s as follows: they
give the displacements in the diffracted waves which envelop the sphere.

The longitudinal diffracted waves (3.2) and the transverse ones of head-
wave typen%3.3) originate on the «"~-parallel circle where the incident
transverse rays make the angle qo* with the normal to the sphere. Here are
formed the longitudinal diffracted waves which move on the surface of the
sphere along the meridians emitting longitudinsl waves tangentially and
transverse waves at the angle o*. As 1s easy to see from Expressions (1.11)
for the displacements, only the 8V polarized transverse waves take part in
the formation of the longitudinal scattered waves (Fig.4). The incident
transverse rays which are tangent to the sphere at its equator give rise to
diffracted transverse 8v and SH waves (3.4) and (3.5) which also propa-
gate on the sphere along the meridians and are then emltted to the point of
observation along the tangent (Fig.4). The presence of cos wr in the
numerators of (3.2) to (3.5) shows that the diffracted waves which encircle
the sphere 1, 2, ..., n... times before falling on the point of observation
are also taken into account. The singularity (shlﬁ)" indicates that the
diffracted waves focus at the points of the axis ¥ = . Near 0 = 1 Equations
(3.1) are not valid (the condition |[vsin®>>1 1s not eatisfied), and we
should use the asymptotic expressions obtained from

P, (— W) = Io v (x — 9)]
valid for [v|>>1 and the quantity |v(n— )| comparable to unity.

Thus, for the scattering of elastic waves, unlike the acoustic and elec-
tromagnetic cases, there exist four types of different diffracted waves
having different illuminated regions and shadows, as may be seen from Equa-
tions (3.2) to (3.5) (Fig.3).



1214 I1.M. Iavorskata

4, Diffraotion in the "illuminated” regions. In the reglons where Equa-
tions (3.2) to (3.5) cease to hold (these are the 1lluminated regions for
the corresponding types of waves), we shall proceed from Equations (2.2) and
{2.3) in which we replace P\,‘,/gl" and P, .Y /0% by corresponding expres-
sions which follow from (3.1) and

Py = expli(v— YyalPow, -k 20 cosvaQ,y, (4.1
We shall now compute the first terms of (2.2) and (2.3) which correspond

to the first term of the right-hand side of (4.1). From the residues at the
peles of the integrands we obtain

_ 2ie?K cos @ BERTE [ Ve han Vicenya] & o
Wil = (1 — a2/ r2) /s (1 — g2yl ksin \‘}> ¢ ~ X
exp [id, { cos™* €— cos-t a/r -k iym)] (. a® \Ye /
% w (1) (tk——qﬁ} 608 Ayt Alr“l (.1 r2 / sin Mﬁ_—) +
4+ ¥y = ¢ cos <7»kﬁ_ —-«-)] + WP =Wl - WP (4.2)
‘\'SUE “vzlsl' + w2281.‘ + wgsz*
25‘82](2003@;{ 14 fie ik, TV ri-giet- eyl kya\‘h a
sy . iky [V ri-a*e?-20 V1-¢]
vt = {1—8232/r2)”*(1—sﬁ)‘h(sin 5) o (5 z) X
exp ik (2 cos™ &— cos™t ga/r 4 Yam})
X 2 — % cos At X
” {t) — q1°) cos Ay
ga . n , e2a% \'\x
X [ro 2 sin (hd— ) + &0 (1 — =) "oos (M — £} (43)
_ 2i cos @ o \e Vo i&g—(i "l:/af_
Wap™® = (1— a2/ rt)s (sin 1‘}) ey < 2 } IR
exp {«-— ipk{ cos a/r——-‘/zn)} a . ( n
; —sin | py® — -
% WP (Tp) (T, — g2%) cos pyn [1‘0 S 4 ) +
. a \'z
4 ¥yl (1 — —ﬁ> cos (pkﬁ— —ﬂ (4.4)
2¢osin ¢ X \Yr o oy fksaNYs a
h ik, ¥V rt-as [ D22 =
Wit = (1 —a?/ /rz)le (sin ﬁ) ¢ \ 2 ) r X
exp{—ix, ( cos=* a/r—1/
X Z I PI P adl 008 (& —1/ ) =Wy - wr (4.5)

€05 ¥ 1T

where the subscript ¢ denotes those terms in (2.2) and (2.3) which corre-
spond to the second term on the right of (4.1), Using the Debye asymptotic
approximations for the spherical Bessel and Hankel functions and the. asympto-
tic expression

0 _expi(vl —1m)
YT T Y anvsin
we compute W, w,**and W, ** Dby the method of steepest descents. We con-
struct the path of steepest descent as in {17] and obtailn

{({vsin®|>1, Rev >3}
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p_ 9 a (siny >‘/=Q(e, a, a3)sinaycosay U [ ( roa
W, = 2c0s @ ( e o) Da (@) rQ (e, r, )+

r \sin®
+ ¥, % sin ocl] exp {ika [Q (g, 7, 2y) — Q (&, a, 2;) — cos ]} (4.6)

st e _a_(sinaz \e o cos ax D_ (ag)
We =COS® T \5ind ) W(I, a) D, (@)

-
—¥,Q, r, ag)] exp {ikzr [Q 1, r,a2)—2 % cos ocz]} + Wt (4.7)

rooa .
Lro —+ sinog —

a (sin oo )‘/z cos Og

Wt = FsinQ oy ) W (1, an) o OXP {thar [Q (L ry aa) —
—2 % cos ag]} + Wy (4.8)

where the W, are the displacements of the incldent wave
U =1, U®=2(2sin*a;—1), Q(,r, a)=)e —a*sina/r?
Wi, a) =VQ(e,r, a)[Q(e, a, a) + cosa] — (a/r) cos af (e, a, a)

D¢ (o) = (2sin? 0 — 1)? £ 4sin® a cos aQ (g, a, &)

D7 (o) = sin®a 4 cosaQl(e, a, o)

The geometric significance of the angles ¢, and a, are indicated in Fig.5.
They are the angles of 1lncldence of the transverse rays which are reflected
as those longltudingl and transverse rays arriving at the point of observation P (r, ¥, ¢).

In Equation (4.8) the upper sign refers to tne case of the rigid sphere,
and the lower one to the cavity. It is easy to see that Equations (4.6) to
(4.8) give the displacements in the waves which are reflected from the sphere
in accordance with the rules of the geometric theory. Equations (4.7) and
(4.8) are valid in the illuminated region for transverse displacements (Fig.3)
and cease to be correct in the region of the penumbra w, near the boupdary
r, of the geometric shadow. In the region w,, we have vz-y2p~«Ay/1” @)
(4 ~ 2.5) and the Debye asymptotic expression for the function NPt )]
which is applied in the derivation of (4.7) and (4.8) is not suitable there.
Furthermore, (4.7) is also invalid in the transition region w, near the sur-
face of the cone ry, since there the Debye
Qﬁymptotic expression for the function
thh(x) is not correct. Equation (4.6) for
thé longitudinal displacements is valid in
the illuminated region for longitudinal waves
and violates in 1its penumbra w, (¥1g.3) near
the cone r, . It should be noted that in
the deformation of the path EF into a path
of steepest descent, poles of the function

V-1l sometimes happen to fall between the
two paths. These poles are taken into account
in the same way as in [17] in obtalning the
final expressions for the displacements.

5. OCaloulation of the displacements in
the transition regions. In the regions w,,
w, and w; the displacements are found in
Fig. 5 accordance with Equations (4.2) to (4.5).
However, the terms corresonding to w,?, w'
and w/* should be computed, following Fok
{19], by quadratures using the more complicated Hankel-Fok asymptotic expres-
sions for héll,, (z) and hf,”.'/m ) -
- s

In this connection, it 1s convenient to transform the contour of integra-
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tion £F into the path T (Fig.6) in the plane
1= (v — 2) (Ypm)'h
for the region w, and w, and the analogous path T'’ in the plane
T=(v—y) M)
for the region w,. As a result, we obtaln

e efcos @ K(t)P;/z () [roVe (2, 7, 1)+ B0 (a/r) p1 (1] A0 gt
' Voasin ¢ > Vit r, )V (L, a, &) [ () — 1 () w ()]

wyl = —

(5.1)

Pr (8) = 2py (1) [0 — Yot — cos™* (afr) pi(l) + cost epi (1)} H-
kVE(t, r, 1) — keaV2 (2, a, 8)

e2a?p? (3) \Ys X . 1 __

Vit r, e) = (i M—,zl(—)> v KTy =1, KO =1 55057
__ipE(e [ kayh Rprer—1] (ka b

W =T g, ) (—i’*> ) 0 (1) = L g, Sy VL, a, €) | 2 )

Further, the integral in (5.1) should be split into two integrals, one
from O to = along the real axls and the other from = exp(®/,wt) to O
along arct = 2/'gn . Using the formula for the Alry function on the ray

arc t = % /,n , we can also reduce the last integral to one wlth real limits
jee)
b @ gcosQ (S K (1) pi (1) [noV2 (2, r, 1) 4 9 (a/r) p1(1)] i) gy o

Ve S Vasme V) VO V(6 o w () —a@we )]

oo . Y ITIP 37 27,43 . 2/ N
+ 3 K (te™) {ry2 (1757, r, 1) 4 o (a/r) pr(te)} o (™) exp [ (e )] g

V(e )V (1, ae) [w (6 — " gn (17 w (0] (5.2)

o = &
(prte ::14‘_{—2”) '2")

Y Y

The integrals of {(5.2) are calculatesd by the method of numerical guadra-
ture with the aid of tables of the funections wu{¢) and z{z) for real, posi-
tive ¢ , which are given in [19].

/ For large negative values of ¢ , l.e. in the
/ ¢ 1lluminated reglon, the integral (5.1) 1s computed
/ tu by the method of steepest descents with the aid of
p ; the asymptotic expressions [19]
1, w (1) = (— 1) exp [2/ai (— )" -+ Vai]
g Re . ; .
et w (1) = (— 1) exp [Ysi (— 1F — Yami] (£ <€0)

Fig. 6

The result obtained on some interval of values of
t coincides with Expression (4.6).

For t> O , i.e. in the region of the shadow for longitudinal displace-
ments, the integral of (5.1) 1s calculated by means of the residues of the
integrand at the zeros of the denominator. Here we obtain a series which
when summed with the series (%.2) colncldes with the seriles (3.2) represent-
ing the solution of the problem in the region of the shadow.

Thus, Expression (5.1) tles together the results obtained earlier for the
solutions in the regions of shadow and light for the longltudinal displace-
ments.,

Analogously, we obtain for w,
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g
w S0 =_ifj£‘3§$ (..___
g 2 Vasing \ 2

kst >—‘f: a {"g Pl () [ (V) — g2 (V) w (7)) g%l 5,

TV ) () — g (m)w(v)]

o
Pl (w€) [0 (%) — gqa (veh) BP0 ()]
v (‘l’e’/miv r 1) [a, (*)— g2 (re!/,m) et/m"w('l')]

[o0]
% [r., B (m) — OV (x, T, 1)J de — 2e‘/-"‘5
-

0
X exp [ (56" [0 - pa (™) — 072 (0%, 7, 1) |} iy
W sh__ G"j‘niQasiﬂ @ (ﬁg_ﬂ_)"’l’f_ {05? Ps‘f' (1‘) L (T) ei‘bl(t) a1 - 2€li'“i X
£ 2 Vasing \ 2 r Vir, r, 1)
It Y1 (petfs™
P2t (ve") M (v) ; YsThy) gy (5.4)
x § oy exp i (x|

v\ T Wy w (%) _r@

=1+ ()5 rE=E, re=g MO=5,
_2(1) k1P kg .. pPD) ksa e

WO=Fa e w0 gy (1) YO Vw1

P2 () = ksa pa (1) [ — Yot —  cos=t apy ()] 7]+ karVE (T, 1, 1)
It is easy to show that Equations {5.3) and (5.4) connect the solutions in
the region of the geometric shadow with those in the illuminated region.
In the reglon w, we obtain, instead of {4.7),

elMcosg a (ki )-';. {09 w (£) + g1 (1) w (1) pr7 (1) exp [ivs ()]
=2Vnsinﬁ~'_( 2 é w' () — q1 (L) w(t) Vit r e

8y
Ve

X

% - Yomi o My T g
i Y w (t)+8/ .(I1(‘3 )1”( }
X {roe ) — Ve (¢, T, a)} dt—e é w0 g (1) o (1)

% = pil (e
v (te%m, 7, &)

Y2 (£} = kyapy () [ — am -+ 2 cos=t £py{t) — cos-t eapy{t)/r]—
— 2ksaV2(t, a, 8) 4 korV2(L, 7, &)

exp [ivs (te7)] [roe —;’ pr{te™) — V2 (1, 7, e)] dt}' (5.5)

These integrals may also be computed by numerical quadrature using the
tables of [19]., the integrals of {5.5) provide a continuous transition from
the solution representing the displacements of the SV waves in region (3)
to the solution in region (%) (Fig.3).

In this way, for each region of Fig.3 the asymptotic expressions for the
displacements (kya, ke > 1) are represented in the form

) w=wP +wi® + wi® +wh
@) we=wP 4w 4w wth wg’ -+ Wgsh
(3) w=wP 4 wgp + wusv + waa®? + wgsh + wgsv + wgsh

(@ w=wP L w P owy® w4 wa'k 4 LS WgSh
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Keller's geometric method in the theory of diffraction [25] can be extended
to the case of diffraction of elastic waves by arbitrary bodies in the same
way as was done in [17]. The diffraction coefficients and decay exponents
(in terms of which the elastic displacements are expressed in Keller's method)
can be taken from [17] for P and .SV waves. For SH waves these can be
obtained by comparison with the asymptotic solution obtained in the present
paper.

The author is grateful to G.A. Skuridin for his interest in this work.
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